About orientations on a Δ-complex structure
Suppose we can write our space X as Y / \sim, when Y is a disjoint union of simplices and \sim are some identifications of some of the faces. I said in the problem class that one can choose any orientations and this gives a Δ-complex structure on X.
This is not true.
The correct statement is that one needs to give an orientation (i.e. an ordering of the vertices) on each simplex, so that these are compatible. For example, if we otart with the following presentation of $\mathbb{R} \mathbb{P}^{2}$:

we have to order the vertices of u and T so that these orderings agree after the identification \sim :

check: the arrow c goes from smaller to bigger ($u_{2}>u_{1}, t_{2}>t_{1}$) in both oimplices similarly for a, b

It is okay if an arrow goes fran bigger to smaller, as long as it does so for any induced orientations, but then we would have to put a - sign when taking the boundary map, which is confusing Thus it is convenient to swap the direction of the anow to go from smaller to bigger always.

In particular, there is no way to make this collection of maps

into a Δ-complex.
Note: this does not mean that X cannot be given such a structure. For example,

In general, note that, if one manages to swap the arrows for the identifications so that any 2 -simplex looks like

then there is a "canonical "rieutation. That is why, when you see a sentence like "take the following Δ-complex structure: $b \underset{a}{\text { The }}$ "
It just means to take the canonical orientations, and not any orientations as I had said. It is true that taking any orientation will work out for the computation, but the connect thing is what I have explained here.

I wrote this in terms of arrows and 2 -simplices because it is easier to visualize, but the analogue works in general, noting that "arrow" is just a choice of linear map from $[0,1]=\Delta_{1}$ to X

In particular, there is only one way to glue all k-dimensional faces of an n-simplex so that we get a Δ-complex structure

Pick an ordering of the vertices. For each k-face σ_{i} ustricting the ordering to σ_{i} gives rise to a unique is $0 f_{i}: \Delta_{k} \longrightarrow \sigma_{i}$, and one has to glue the σ_{i} according to these (so $x \in \sigma_{i}$ is glued to $y \in \sigma_{j}$ if $\rho_{i}^{-1}(x)=\rho_{j}^{-1}(y)$).

The associated chain complex is

$$
\mathbb{Z} \sigma_{n} \xrightarrow{\partial_{n}} \mathbb{Z} \sigma_{n-1} \longrightarrow \ldots \longrightarrow \mathbb{Z} \sigma_{1} \xrightarrow{\partial_{1}} \mathbb{Z} \sigma_{0}
$$

where $\quad \partial_{k}\left(\sigma_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \cdot \sigma_{k-1}=\left\{\begin{array}{l}0 \text { if } k \text { odd } \\ \sigma_{k-1}, i f k \text { even }\end{array}\right.$, so $H_{k}^{\Delta}(x)=\left\{\begin{array}{l}\mathbb{Z} \text { if } k \text { odd or } \\ k=0 \\ 0 \text { otherwise }\end{array}\right.$

